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Abstract:  Adverse effects associated with occupational exposure to benzene have often 
been reported in humans. It has been shown, that benzene causes chromosomal 
aberrations, sister chromatid exchanges and micronuclei in lymphocytes of exposed 
workers. In addition to evidence by conventional cytogenetic methods, the genotoxic 
effect of benzene has also been proved by a more specific approach based on 
fluorescence in situ hybridization with DNA probes. In the present paper, the nature of 
benzene-induced chromosomal aberrations and supposed consequence on human health 
is reviewed. The new possibilities in chromosomal alterations identification by 
molecular cytogenetic methods are also presented. 
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INTRODUCTION 

 
Benzene is an important pollutant compound, present in 

both occupational and general environment. Chronic 
exposure to high concentrations of benzene in humans is 
associated with an increased incidence of myelodysplastic 
syndrome (MDS) and acute myelogenous leukemia (AML) 
[48, 43, 39]. 

It is well known that individuals occupationally 
exposed to benzene are at a much higher risk of develo-
ping leukaemia than the normal population. Therefore, 
many studies have been focused on occupationally 
benzene-exposed workers [53, 67, 58, 3, 26, 35, 56, 17, 
2]. Potential for workers exposure to benzene can be 
higher in certain industries, such as the plants for the 
production of organic chemicals, shoe factories and 
leather manufacturing [20, 55, 57], printing companies 
[51], elevator manufacturing [22], petrol stations [4] and 
the petrochemical industry [46]. In a recent study, Glass 
et al. [11] found in occupationally exposed persons from 
the petroleum industry cohort an excess risk of leukaemia 
associated with cumulative benzene exposures, and benzene 

exposure intensities that were considerably lower than 
reported in previous studies.  

Benzene has been also implicated as an environmental 
risk factor in leukaemia and other haematological diseases. 
The main sources of environmental exposure to benzene 
are road traffic exhaust [7] and volatile organic compounds 
[1]; this means urban air pollution in general [6, 44, 45, 
12]. Lifestyle factors, such as cigarette smoking, can 
contribute to exposure [32, 29]. The soil obtained from oil 
production facilities and coastal refineries is also highly 
contaminated by benzene [33, 16]. 

Benzene exposure in humans and animals has been 
shown to result in structural and numerical chromosomal 
aberrations in lymphocytes and bone marrow cells, 
indicating that benzene is genotoxic [52]. According to 
Snyder et al. [42], benzene and its metabolites do not 
function well as mutagens but are highly clastogenic, 
producing chromosomal aberrations, sister chromatid 
exchanges and micronuclei. In several studies, increased 
levels of chromosomal aberrations in peripheral blood 
lymphocytes were correlated with a heightened risk of 
cancer, especially haematological malignancies. Thus, 
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chromosomal aberrations may be a predictor of future 
leukaemia risk [66].  

In the present review, the nature of benzene-induced 
chromosomal aberrations in humans is reported and new 
trends in chromosomal alterations identification are 
briefly described. 

 
THE NATURE OF BENZENE-INDUCED 

CHROMOSOMAL ABERRATIONS IN HUMANS 
 
Several studies have suggested that induction of 

chromosomal aberrations may play a role in benzene-
induced carcinogenesis, and the aberrations detection may 
serve as a marker of benzene’s early effects. Therefore, 
the nature of benzene-induced chromosomal aberrations 
was predominantly investigated in workers occupationally 
exposed to benzene. Moreover, it has been widely 
documented that benzene requires metabolic activation 
for its genotoxic effect. The requirement for metabolic 
activation and the complexity of benzene’s metabolic 
pathways must be taken into account, particularly in 
relation to in vitro experiments.  

In general, the genetic alterations induced by benzene 
mostly include aneuploidy, deletions and translocations. 

Benzene and its metabolite 1, 2, 4-benzenetriol (BT) is 
known to cause cytogenetic changes in specific chromo-
somes, especially in the C-group chromosomes and the X 
chromosome in humans [30, 31, 8]. According to 
Sasiadek [36] the distribution of breakpoints in the 
karyotypes of examined workers exposed to benzene was 
significantly non-random and the breakpoints accumulated 
mainly on chromosomes 2, 4 and 7.  

Aneuploidy induction by benzene and its metabolites 
has been experimentally demonstrated both in vivo in 
benzene-exposed workers and in experiments in vitro. 
The data of Chen et al. [13] demonstrated that both 
aneuploidy and chromosomal breakage are early genotoxic 
events induced by benzene or its metabolites in vivo and 
that the nature of chromosomal alternations might vary 
depending on the target organ or cell type. Trisomy 
accounted for the majority of the hyperdiploidy induced 
by BT in vitro in the C-group chromosomes 7 and 9 [61]. 
Trisomy 9 was also the major form of benzene-induced 
hyperdiploidy in blood cells of nondiseased workers 
exposed to benzene [62]. As described Eastmond et al. 
[9], the benzene metabolite hydroquinone (HQ) may 
contribute significantly to the numerical and structural 
aberrations observed in benzene exposed workers. Later 
in vitro studies of Stillman et al. [47] documented that 
HQ induces specific chromosome loss (monosomy 5, 7 
and 8) in the human lymphoblast cell line. The same 
author also concluded that CD34+ bone marrow cells are 
more susceptible to HQ and show different pattern of 
cytogenetic aberrations compared to lymphocytes [49].  

Monosomy of chromosomes 5 and 7 and long arm 
deletions del5(q) and del7(q) was found in human 
lymphocytes treated with benzene metabolites 1, 2, 4-
benzenetriol (BT) and hydroquinone (HQ) in vitro [63]. 

In addition, leukaemia-specific changes such as the loss 
and long (q) arm deletion of chromosomes 5 and 7 have 
been found in the peripheral blood of otherwise healthy 
benzene-exposed workers [64]. Smith et al. [40] observed 
increased translocations t(8;21) and hyperdiploidy in 
chromosomes 8 and 21. In the same year, Carere et al. [5] 
detected hyperploidy X and 18 in peripheral lymphocytes 
of gasoline station attendants. Zhang et al. [65] detected 
trisomy of chromosomes 7 and 8 among workers exposed 
to benzene. The study of Stillmann et al. [48] described 
for the first time that benzene metabolites catechol and 
HQ act in synergy to induce specific chromosome 
del(5)(q31) found in secondary MDS/AML.  

Modest but significantly increased frequencies of 
breakage affecting both chromosomes 1 and 9 were obser-
ved by Marcon et al. [27] in the cultured lymphocytes of 
benzene exposed workers. The incidence of dicentric 
chromosomes in the exposed group employed in the shoe 
industry was significantly higher than in the control group 
[20].  

As far as sex chromosomes are concerned, the higher 
benzene concentration may induce an increase in 
aneuploidy frequency of sperm sex chromosome in 
exposed workers [25]. In sperm of exposed employees, 
the increase in aneuploidy frequency of 9 and 18 
chromosomes have been proved, also [24]. The 
experiments of Liu et al. [26] revealed increases in 
frequencies not only of numerical aberrations for 
chromosome 1 and 18, but also of structural aberrations 
for chromosome 1 of sperms in exposed workers. 

Chung and Kim [15] indicated that treatment with 
benzene metabolites resulted in the induction of 
monosomy 5, 7, 8 and 21 in human lymphocytes in a 
concentration-dependent manner.  

Chung et al. [14] found that the proportion of 
micronuclei (MN) exhibiting centromeric signals for 
chromosome 8 was higher than that for chromosome 7 
among the total induced micronuclei (MN) in BT-treated 
lymphocytes, suggesting that chromosome 8 is more 
frequently involved in the formation of MN. This result is 
consistent with observation that benzene cause non-
random chromosome aberrations in C-group chromosomes. 
Several investigators reported in previous works aneuploidy 
of some C-group chromosomes induced by benzene and 
its metabolites [8, 62, 63, 64, 65]. Among C-group 
chromosomes, numerical changes in chromosomes 7, 8, 9 
were commonly studied due their possible association 
with haematological disorders including leukaemia. 
Recently, the use of fluorescent in situ hybridization has 
also revealed that industrial benzene exposure can induce 
aneuploidy of specific chromosomes (7, 8, 9) in the cells 
of exposed subjects [12]. Trisomy 7 and 9 were induced 
in the human promyelocytic cell line, HL-60, when 
exposed in vitro to BT, but relative sensitivity of these 
chromosomes to aneuploidy induction was not compared 
[61]. The reason for the selective sensitivity of specific 
chromosomes to benzene is still unclear. One possible 
explanation for the preferential effect of benzene metabolite 
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on specific chromosomes may be suggested by the fact 
that only cells with non-lethal chromosome aberration 
could survive to be detected. The elimination of telomere 
on particular chromosome has been reported to lead to 
selective chromosome gain and loss [65]. If aberration of 
C-group chromosomes, especially chromosome 8, at 
telomere locus may not be lethal enough, then cells with 
aberration in these chromosomes will be detected more 
selectively.  

According to the analysis of Marcon et al. [28], a 
significant association between cytogenetic findings and 
intensity of benzene exposure suggests that signal 
displacement in 1cen-1q12 regions of human chromosome 
1 may be a marker of chemical exposure. The recent work 
of Kim et al. [21] has shown that low-level benzene 
exposure was associated with significant increases in both 
monosomy and trisomy of chromosomes 8 and 21. 
Translocations between chromosomes 8 and 21- t(8;21) - 
were 8 fold more frequent in the high-level exposure 
group compared to the control group.  

Zhang et al. [66] declared that in leukaemia cases 
associated with benzene exposure, there is no evidence of 
a unique pattern of benzene-induced chromosomal 
aberrations in humans. On the contrary, Shen et al. [38] 
concluded that exposure to benzene may be the cause for 
Chinese myelodysplastic syndrome and acute myeloid 
leukaemia patients with t(1;7) translocation.  

The findings of Lebailly et al. [23] suggest that AML 
cases with defined chromosomal abnormalities could be 
related to specific carcinogen exposures. Smoking and 
genetic polymorphism in microsomal epoxide hydrolase 
gene could be risk factors for AML with del(7q) or 
t(8;21). Polymorphisms in the genes for benzene 
metabolising enzymes influence the susceptibility of 
individuals to chromosomal aberrations in relation to 
benzene exposure [21]. The specific chromosomal 
changes found in acute myeloid leukaemia might serve as 
useful biomarkers of early effect in chemoteraphy and 
benzene induced causal models [41].  

DNA-reactive benzene metabolites forming adducts or 
cross-links oxidative DNA damage clastogenesis due to 
topoisomerase II inhibition and aneugenesis due to 
damage to components of the mitotic apparatus are 4 
specific mechanisms most frequently used to explain 
benzene genotoxicity [59]. Studies of the chromosomal 
translocations found in BZ-exposed persons and 
secondary human leukaemia produced by topoisomerase 
II inhibitors provide some additional support for this 
mechanism being potentially operative in BZ-induced 
leukaemia [60].  

 
CHROMOSOMAL ABERRATION ANALYSIS BY 

MOLECULAR CYTOGENETIC METHODS 
 
Tests for chromosomal aberrations (CA) are usually 

included in cytogenetic assays to determine the clastogenic 
properties of xenobiotics. There are 3 main methods of 
chromosome visualisation applied in CA analysis: 

Giemsa staining, banding techniques and fluorescence in 
situ hybridisation (FISH) with chromosome painting [37]. 

The analysis of Giemsa-stained chromosomes is limited 
to the quantification of chromosome aberrations (breaks, 
gaps). The technique of G-banded chromosomes is more 
informative and allows finding the preferential breakage 
sites in the chromosomes. Fluorescent in situ hybridization 
(FISH) is the molecular cytogenetic method, using 
typically 3 different kinds of DNA probes which recognize 
repetitive DNA sequencies (satellite, telomeric), single 
copy DNA sequences as well as unique sequences 
spanning the length of a particular chromosome.  

DNA probes complementary to the whole sequences of 
a specific chromosome are called whole chromosome 
paints (WCP) or chromosome specific probes. Aberration 
detection is based upon visualising colour changes in 
metaphase chromosomes, in comparison to classical 
methods, which involve detection of aberrations by 
banding or alterations in chromosome length [54]. At 
metaphase, both chromosome homologues are “painted” 
or brightly fluorescent. Chromosome painting offers a 
new suitable method to study radiation and chemically 
induced chromosomal aberrations. It is particularly useful 
for detecting stable aberrations (especially translocations 
and inzertions), which are difficult to quantify with 
classical methods. Stable aberrations are a subset of 
chromosome aberrations, which, by their nature, are 
compatible with cell division and, as such, can be 
transmitted from one cell generation to the next and 
eventually become the hallmark of a clone with its own 
specific karyotype [50].  

FISH with probes targeting centromeric or pericentro-
meric satellite sequences is being increasingly used to 
detect numerical chromosome aberrations induced by 
chemical and physical agents in vitro and in vivo. It has 
been recently shown that centromeric heterochromatin of 
human chromosome 1 (1 cen-1q12 region) is one of the 
important regions prone to breakage. Two different 
chromosome 1- specific DNA probes were used in the 
study of Rupa et al. [34]: a classical-satellite probe 
specific for the pericentric heterochromatin of chromosome 
1 and alpha-satellite probe, specific for a small centromeric 
region adjacent to the pericentric heterochromatin region. 
Using these different labelled probes, hyperdiploidy of 
chromosome 1 could be successfully distinguished from 
breakage within the heterochromatic region, or between 
the two-labelled regions. Small increases in hyperdiploidy 
and in chromosomal breakage in 1cen-1q12 and 9cen-
9q12 regions were detected in Estonian benzene factory 
workers compared with control; the frequency of breakage 
in the 9cen-9q12n region was higher then that observed in 
the 1cen-1q12 region [10]. Centromeric DNA probes have 
been also shown to be a valuable tool for the identification 
of aneuploidy occurring in interphase nuclei. 

A novel chromosome banding technique - spectral 
colour banding (SCAN) - has been developed recently 
[18]. This technique is based on spectral karyotyping 
(SKY) combined with simultaneous hybridisation of 
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labelled chromosome band-specific painting probes. SCAN 
analysis simultaneously identifies the origin of chromosome 
bands by a unique spectrum for each band. SCAN 
analysis can identify a particular region of a chromosome 
such as a translocated or deleted region, so that it can be 
directly assigned to the corresponding band number in G-
banding. SCAN is useful for full characterization of 
chromosomal abnormality that could not be identified by 
G-banding or SKY analysis. This technique can therefore 
be expected to become a powerful tool for cancer 
cytogenetic research [19].  

 
CONCLUSIONS  

 
Since benzene is a relatively common environmental 

and occupational contaminant, genotoxic effect on human 
health status is still a matter of interest. The frequencies 
of chromosomal aberrations as well as micronuclei can be 
used as biomarkers of effects. It seems almost certain that 
chromosome-specific aneuploidy and translocation play 
key roles in the development and progression of leukaemia 
as in many other cancers. Therefore, chromosome-
specific aneuploidy with higher sensitivity to benzene 
exposure would be a useful biomarker for leukaemia risk 
of benzene.  

More precise identification of the metabolites and 
metabolic pathways contributing to benzene’s genotoxic 
effects, as well as the specific chromosomes and 
chromosome regions involved in the observed alternations, 
should be continuously important areas for present-day 
and future research.  
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